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Non-uniform step-size distribution is implemented for split-step based nonlinear compensation in single-
channel 112-Gb/s 16 quadrature amplitude modulation (QAM) transmission. Numerical simulations of the
system including a 20x80 km uncompensated link are performed using logarithmic step size distribution
to compensate signal distortions. 50% of reduction in number of steps with respect to using constant
step sizes is observed. The performance is further improved by optimizing nonlinear calculating position
(NLCP) in case of using constant step sizes while NLCP optimization becomes unnecessary when using
logarithmic step sizes, which reduces the computational effort due to uniformly distributed nonlinear phase

for all successive steps.
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Nonlinear compensation by using digital signal process-
ing (DSP) has become an active research topic for long-
haul high-speed coherent transmission systems!! =3, In
a system with uncompensated transmission link, sim-
ple one-stage nonlinear compensation is not sufficient
and the interaction of fiber dispersion and nonlinearity
needs to be considered very carefully in digital processing
algorithms. This can be effectively achieved by numer-
ically propagating the received distorted signal through
a virtual fiber with negative attenuation, dispersion and
nonlinearity coefficients, i.e. by solving an inverse non-
linear Schrodinger equation (NLSE) using the split-step
Fourier method (SSFM). The amplitude and phase of
the transmitted optical signal thus can be reconstructed
at the receiver side. This inverse process is often called
digital backward propagation (DBP), which has shown
a great potential in nonlinear compensation and has
been applied to various optical transmission systemsl.
Recent investigations even focus on improving the com-
putational efficiency of DBP by shifting the nonlin-
earity calculating position (NLCP)B8, filtering"®) or
employing a weighted averaging operation in the non-
linear operator®.. Results in Refs. [7,9] have proven to
allow for combining subsequent spans in one split step.
In such cases, the step size remains the same and can be
increased up to 4 times the fiber span length.

On the other hand, step-size distribution plays a very
important role in solving NLSE when modeling the sig-
nal propagation in fibers'?. Alternatively non-uniform
step-size distribution, where the step size decreases as
power increases, has also been proposed to enhance
the accuracy in estimation of signal distortions com-
pared with constant step-size distribution. Especially
in wavelength-division multiplexing (WDM) systems,
Bosco et al.'™12] used logarithmic step sizes for SSFM
in the forward propagating simulations and the artifacts
caused by numerical simulations was successfully sup-
pressed. Our previous contribution has implemented
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logarithmic step sizes for DBP compensation in 1.12-
Tb/s dual-polarization quadrature phase shift keying
(DP-QPSK) WDM transmission!*?l. The results show
1-dB improvement in Q by just applying logarithmic
step sizes without optimizing NLCP and transmission
parameters.

In this letter, we further analyze the influence of shift-
ing NLCP on the performance of logarithmic step-size
based DBP. By numerical simulations, a logarithmic dis-
tribution of step sizes is applied in a single-channel 16
quadrature amplitude nodulation (QAM) system with
bit rate of 112 Gb/s over a 20x80 km link of standard
single mode fiber (SSMF) without in-line dispersion
compensation. In order to enhance the accuracy in com-
pensating nonlinearity, one DBP stage has been used to
compensate for one propagation span. Each DBP stage
includes at least two SSFM steps for implementing log-
arithmic step-size distribution but only one SSFM step
for constant step-size distribution. The nonlinearity is
calculated at different positions in each successive SSFM
step, which can be modeled as symmetric, asymmetric,
and the modified!® schemes. The results of using both
logarithmic and constant step sizes regarding variation
in NLCP are compared, showing the corresponding po-
tential to improve DBP performance.

In our investigation, numerical simulations of a single-
channel 16-QAM transmission system with bit rate of
112 Gb/s (28 Gbaud) have been performed with com-
mercial software. This achieves to 100-Gb/s net data
rate when a forward-error-correction (FEC) overhead of
7% and Ethernet overhead of 4% are used. At the re-
ceiver, an ideal laser source as local oscillator combined
with an optical hybrid is used to convert the received
optical signal down to base-band electrical signal and
separate the I and Q components. Figure 1(a) shows
the structure of applied homodyne coherent receiver in-
cluding a DSP module which is implemented in matlab
environment. The base-band electrical signal was sam-
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pled at 2 symbol rate by analog-to-digital converters
(ADCs) and laser phase noise was neglected. In the DSP
module, the digitized signal was firstly compensated by
20 DBP stages which was equal to the number of prop-
agation spans during fiber transmission. As the signal
distortion is fully compensated by DBP compensation,
no extra finite-impulse-response (FIR) filter is needed
for chromatic compensation. Each DBP stage can be
performed with changing step-size distribution as well
as varying NLCP by adapting the SSFM algorithms.
Figure 1(b) illustrates different SSFM algorithms used
in this study, taking an example of using 4 split steps
in one DBP stage to compensate for one transmission
span. In the constant step-size scheme, step size remains
the same for all steps, while in the logarithmic step-size
scheme, step-size decreases with increasing power. This
basic principle is well known from the adaptive step-size
methods for implementing signal propagation in optical
fibers. Throughout this study we used logarithmic step-
size distribution according to Ref. [12].

The solid arrows in Fig. 1(b) depict the positions
for calculating the nonlinear phase. In the symmetric
scheme, NLCP is located in the middle of each step.
In the asymmetric scheme, NLCP is located at the end
of each step. In the modified scheme, NLCP is shifted
between the middle and the end of each step and the po-
sition is optimized to achieve the best performancel®. In
all schemes, the nonlinear phase was calculated by ¢ni,
= vpBp * P Letr, where the nonlinear coefficient for DBP
YpBp was optimized to obtain the best performance and
the nonlinear step size was determined by the effective
length Legs of each step. All the algorithms were im-
plemented for DBP compensation to recover the signal
distortion in a single-channel 16-QAM transmission sys-
tem with bit rate of 112 Gb/s. In this simulation model,
we used a 20x80 single mode fiber (SMF) link without
any inline dispersion compensating fiber (DCF). SMF
has the propagation parameters: attenuation coefficient
a=0.2 dB/km, dispersion coefficient D=16 ps/(nm-km)
and nonlinear coefficient ygmp=1.2 km™*W~!.  The
EDFA noise figure has been set to 4 dB.

Figure 2 compares the performance of all SSFM algo-
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Fig. 1. (Color online) (a) Receiver structure with DBP com-
pensation, and (b) schemes of SSFM algorithms for DBP com-
pensation. S: symmetric-SSFM, A: asymmetric-SSFM, and
M: modified-SSFM. The red-dashed curves show the power
dependence along per-span length.
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Fig. 2. BER of all SSFM algorithms with varying number of
steps per DBP stage for (a) 3 and (b) 6 dBm.

rithms with varying number of steps per DBP stage. In
our results, bit error ratio (BER), calculated from error
vector magnitude (EVM) of received symbols!'¥, was
used for performance evaluation of received 16-QAM sig-
nals. Also various launch powers are compared. For both
launch powers the logarithmic distribution of step sizes
enables improved DBP compensation performance com-
pared to using constant step sizes. This advantage arises
especially at smaller number of steps (less than 8 steps
per DBP stage with launch power=6 dBm). As the num-
ber of steps per DBP stage increases, BER stops decreas-
ing and all the SSFM algorithms approach the minimum
possible BER. Using logarithmic step sizes does not out-
perform the conventional methods when applying large
number of steps per DBP stage. When smaller number
of steps is used, for both logarithmic and constant step
sizes, the modified SSFM scheme, which optimizes the
NLCP, shows better performance than symmetric SSFM
and asymmetric SSFM, where the NLCP is fixed. This
coincides with the results in Ref. [6]. However, the
improvement given by modified SSFM becomes less sig-
nificant when logarithmic step sizes is used, which means
the NLCP optimization reveals less importance and it is
already sufficient to calculate the nonlinearity at the end
of each step if logarithmic step sizes are used. On the
other hand, at higher launch powers, the overall BER
increases and the saturation of BER reduction happens
toward larger number of steps.

Figure 3 shows the required number of steps per DBP
stage to reach BER=10"2 at various launch powers for
different SSFM algorithms. It is obvious that more steps
are required for higher launch powers. Using logarith-
mic distribution of step sizes requires reduced number
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of steps to reach a certain BER than using uniform dis-
tribution of step sizes. At launch power of 3 dBm, the
use of logarithmic step sizes reduces 50% in number of
steps per DBP stage with respect to using the asymmet-
ric SSFM scheme with constant step sizes, and 33% in
number of steps per DBP stage with respect to using the
symmetric and modified SSFM schemes with constant
step sizes. This improvement can be achieved based on
minimizing the overall nonlinear phase shift by enlarging
the step size at lower power to equalize the nonlinear
phase calculated in every step along each complete DBP
stage.

Uniformly-distributed nonlinear phase for all suc-
cessive steps can be verified by multiplication of Legs
and average power in each step resulting in a constant
value (0.024 rad when 3-dBm launch power is applied).
Figure 4 compares constellation diagrams of received 16-
QAM signals at 3 dBm compensated by DBP with 2 steps
per DBP stage, using constant step-size and logarithmic
step-size distributions. In both cases the asymmetric
SSFM has been applied.

In conclusion, we study logarithmic step sizes for DBP
implementation and compare the performance with con-
stant step sizes in a single-channel 16-QAM transmission
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Fig. 3. Required number of steps per DBP stage at various
launch powers for different SSFM algorithms.
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Fig. 4. Constellation diagrams of received 16-QAM signals at
3 dBm after DBP compensation with (a) constant step-size
and (b) logarithmic step-size methods.

system over a length of 20x80 km at a bit rate of 112
Gb/s. The results reveal that use of logarithmic step
sizes performs better than constant step sizes in case of
applying the same number of steps, especially at smaller
numbers of steps. Using logarithmic step sizes saves up
to 50% in number of steps with respect to using constant
step sizes. Besides, symmetric, asymmetric and modified
SSFM schemes are applied for both logarithmic and con-
stant step-size methods. By using logarithmic step sizes,
the asymmetric scheme already performs nicely and op-
timizing nonlinear calculating position becomes less im-
portant in enhancing the DBP performance. Therefore
the logarithmic step-size method is still a promising op-
tion in terms of improving DBP performance although
more calculation efforts are needed compared with the
existing multi-span DBP techniques where one DBP
stage compensates for several propagation spans.
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